ОСОБЛИВОСТІ ВИКОРИСТАННЯ ЗАСОБІВ MACHINE LEARNING ПІД ЧАС ІДЕНТИФІКАЦІЇ ПОДІБНИХ СОРТІВ РОСЛИН (на прикладі Lactuca sativa L. var. сapitata)

Автор(и)

  • Н. С. Орленко Український інститут експертизи сортів рослин https://orcid.org/0000-0003-4103-7806
  • Н. В. Лещук Український інститут експертизи сортів рослин https://orcid.org/0000-0001-6025-3702
  • Н. В. Симоненко Український інститут експертизи сортів рослин
  • М. М. Таганцова Український інститут експертизи сортів рослин
  • О. А. Стадніченко Український інститут експертизи сортів рослин

DOI:

https://doi.org/10.31210/visnyk2019.04.30

Ключові слова:

експертиза на відмінність, однорідність та стабільність, салат посівний головчастий, статистичні методи в селекції, Machine Learning, IBM SPSS Statistics

Анотація

Розглянуто технологічні підходи до використання засобів Machine Learning під час ідентифікації нових сортів сільськогосподарських рослин на підставі набору даних загальновідомих сортів, алго-ритм найближчого сусіда. Метою цієї роботи є розроблення прикладу застосування методу машин-ного навчання та оцінювання придатності його використання під час оброблення даних кодів прояву морфологічного опису сортів рослин. Під час дослідження використано й аналітичний та статистичний методи. Дослідження проводилось на прикладі даних морфологічного опису сортів Lactuca
sativa L. var. capitatа. Опробована інформаційна технологія використання засобів машинного навчан-
ня для формування комп’ютерної моделі подібних сортів салату посівного головчастого з викорис-
танням статистичного пакету IBM SPSS Statistics. У результаті експерименту з комп’ютерною
моделлю навчання встановлено, що найбільш точні результати класифікації отримано з викорис-
тання ознаки розмір головки салату посівного головчастого як цільової змінної моделі та ознаки
щільність головки салату посівного як фокусну змінну. Дослідження показало придатність застосу-
вання засобу Machine Learning під час ідентифікації груп подібних сортів салату посівного головча-
стого за морфологічними ознаками. Пакет статистичних програм IBM SPSS Statistics є зручним у
користуванні, надає досліднику широкий спектр засобів експериментування з моделлю сортів бота-
нічного таксону, дає змогу візуалізувати отримані результати моделювання з використання діаг-
рам, які добре унаочнюють результати моделювання. Головна діаграма моделі є інтерактивною, що
дозволяє досліднику експериментувати з моделлю. Цей метод може бути рекомендовано для вико-
ристання під час оброблення даних кваліфікаційної експертизи на відмінність, однорідність та ста-
більність.

Downloads

Опубліковано

2019-12-27

Як цитувати

Орленко, Н. С. ., Лещук, Н. В. ., Симоненко, Н. В. ., Таганцова, М. М. ., & Стадніченко, О. А. . (2019). ОСОБЛИВОСТІ ВИКОРИСТАННЯ ЗАСОБІВ MACHINE LEARNING ПІД ЧАС ІДЕНТИФІКАЦІЇ ПОДІБНИХ СОРТІВ РОСЛИН (на прикладі Lactuca sativa L. var. сapitata). Scientific Progress & Innovations, (4), 233–240. https://doi.org/10.31210/visnyk2019.04.30